Характеристика гладкой ткани. Виды мышечной ткани

из гладкой мышечной ткани построен мышечный слой стенок всех полостных внутренних органов, она находится также в стенках кровеносных, сосудов и в коже. Сокращается эта ткань сравнительно медленно, долго не утомляется. Сокращения ритмичные, через равные промежутки времени. Развивается эта ткань из мезенхимы, клетки которой вытягиваются в одном направлении, приобретая веретенообразную форму, сближаются друг с другом и образуют плотный пласт. В цитоплазме клеток появляются нити- протофибриллы. При естественном физиологическом износе и при повреждении ткань восстанавливается за счет амитотического деления мышечных клеток, а также за счет малодифференцированных элементов, которые в ней всегда имеются.

Сформировавшаяся гладкая мышечная ткань состоит из удлиненных

Рис. 6L Рыхлая сеть гладкомышечных клеток эндокарда.

Клеток, плотно прилегающих друг к другу (рис. 61). Благодаря тонким прослойкам ретикулярной и соединительной ткани клетки объединяются в пучки, между которыми находятся более грубые прослойки соединительной ткани с сосудами и нервами. Гладкие мышечные клетки чаще всего имеют форму сильно вытянутых веретенец, нередко заканчивающихся ветвящимися концами. Длина клеток в зависимости от органа колеблется от 20 до 500 мкм. Соответственно форме клетки ядро ее также удлиненное и лежит почти в центре клетки. Вокруг него расположены обычные для всякой клетки органел-лы: центросома, митохондрии, пластинчатый комплекс, цитоплазматичес-кая сеть, включения гликогена. При изучении в световом микроскопе обнаруживаются оформленные миофибриллы, хотя электронно-микроскопические исследования показывают, что в цитоплазме этих клеток присутствуют лишь сократимые элементы Ъ виде тонких миофиламентов, ориентированных продольно, обычно не оформленных в пучки. С поверхности гладкая мышечная клетка окружена оболочкой - миолеммой, а также одета базальной мембраной, к наружной поверхности которой прикрепляются коллагеновые и аргирофильные волокна. Иннервируется гладкая мышечная ткань вегетативной (автономной) нервной системой, и действие ее непосредственно не зависит от коры головного мозга, хотя и контролируется ею.

ПОПЕРЕЧНОПОЛОСАТАЯ МЫШЕЧНАЯ ТКАНЬ

Из этого вида ткани построены вся соматическая, или скелетная, мускулатура млекопитающих, а также мышцы языка, мышцы, приводящие в движение глазное яблоко, мышцы гортани и некоторые другие. Поперечнополосатые мышцы резко отличаются от гладких тем, что сокращаются они значительно быстрее (доли секунды); это сокращение происходит неритмично; поперечнополосатой ткани свойственна быстрая утомляемость.

Развивается поперечнополосатая мышечная ткань из миотомов, являющихся частью сомитов мезодермы. Миотомы содержат клетки удлиненной формы - миоблсюты, которые растут, сливаются между собой, образуют многоядерные симпластические образования, называемые мышечными трубочками. Ядра в них располагаются в центре, а в цитоплазме заметна слабая фибриллярность. В дальнейшем в центральной части мышечных трубочек интенсивно развиваются миофибриллы, а ядра оттесняются к сарколеммам. Из окружающей мезенхимы формируется эндомизий, и таким обрагом окончательно формируется мышечное волокно.

Рис. 62. Поперечнополосатая мышечная ткань:

А - схема строения; Б - мышцы языка в поперечном разрезе (а) и продольном разрезе (б).

Поперечнополосатая ткань состоит из поперечнополосатых мышечных волокон, объединенных при помощи рыхлой соединительной ткани в лучки. Мышечные волокна (рис. 62) являются неклеточными симпластиче^шми образованиями удлиненной цилиндрической формы. Они имеют дл шу от нескольких миллиметров до 10-12 см и более. Толщина их колеблется от 10 до 200 мкм и зависит от вида, породы, возраста и физиологической активности животного, а также от типа анатомической структуры мышц. В одной мышце наряду с мелкими находятся и крупные волокна (П. А. Глаголев,

Н. Н. Морозова, В. С. Сысоев, М. М. Стреб-кова). Каждое мышечное волокно покрыто оболочкой - сарколеммой (sarcos - мясо, lemma - оболочка), состоящей из двух основных слоев. Непосредственно к волокну прилегает плазмалемма, аналогичная оболочкам клеток. Наружную часть сарколеммы составляет бесструктурная мембрана, напоминающая базальную мембрану эпителия. Снаружи сарколемму, точнее базальную мембрану, оплетают кол-лагеновые волокна, которые на некотором расстоянии от мускульного волокна переходят в коллагеновые волокна окружающей соединительной ткани. Содержимое волокна аналогично цитоплазме клеток и называется саркоплазмой.

Рис. 63. Схема строения участка поперечнополосатого мышечного волокна:

/ - базальная мембрана; 2- плазмалемма; 3 - митохондрии; 4 - латеральная цистерна и 5 - трубчатые каналы цитоплазматической сети; 6 - каналы Т-системы; 7 - триада; 8 - толстые протофибриллы; 9 - тонкие протофибриллы; 10 - И-диски; 11 - А-диски; 12 - Z-полоска; 13 - Н-полоска.

В саркоплазме находятся ядра, орга-неллы, а также включения. Ядра в волокне у разных животных располагаются по-разному: у млекопитающих они находятся по периферии волокна под сарколеммой, а у птиц - в центре волокна. В одном волокне может быть свыше сотни ядер. Они имеют форму сильно вытянутых овальных телец и бедны хроматином. В саркоплазме отмечают большое количество крупных митохондрий (саркосом). Особенно много саркосом между миофибриллами. Саркосо-мы благодаря содержащимся в них ферментам принимают активное участие в процессах, связанных с выработкой энергии. Кроме того, в мышечном волокне находится пластинчатый комплекс и аналогичный цитоплазматической сети других клеток саркоплазмати-ческий ретикулум - система канальцев, пузырьков, цистерн, располагающихся вдоль волокна, между миофибриллами (рис. 63-4, 5).

Местами сарколемма вдается внутрь волокна, образуя поперечные трубочки - Т-системы или Т-каналы. По ним в волокно поступает вода, и они участвуют в распространении нервного импульса, а также вместе с саркоплаз-матическим ретикулумом принимают участие в процессе сокращения волокна (6). Комплекс Т-канала и прилегающих к нему с обеих сторон элементов саркоплазматического ретикулума называется триадой.

В саркоплазме поперечнополосатого мышечного волокна содержатся также трофические включения, такие, как жир, гликоген и миоглобин (белок).

Количество жира различно в разных волокнах. От миоглобина зависит цвет мышцы - отсюда красные и белые мышцы. В темно-красных мышцах его больше. Этот белок легко связывает кислород, при его участии происходит дыхательное фосфорилирование, доставляющее большое количество энергии. В более светлоокрашенных мышцах миоглобина меньше, в них преобладает анаэробный процесс обмена углеводов, благодаря чему освобождается меньшее количество энергии. В свете сказанного становится понятным, почему у животных, живущих в условиях кислородной недостаточности, примером которых могут быть водные млекопитающие и обитатели

Рис. 64. Мышечные волокна в поперечном разрезе:

А - равномерное и Б - неравномерное распределение.

Высокогорий, миоглобина особенно много. У диких животных мышцы содержат больше миоглобина, чем у домашних. Мышцы у интенсивно работающего вола окрашены сильнее, чем у менее интенсивно работающего; у молодых животных слабее, чем у взрослых. У кур, потерявших способность летать, грудные мышцы, связанные с движением крыла, окрашены слабо, тогда как активно работающие мышцы тазовых конечностей имеют темно-красный цвет.

Сократимыми элементами мышечного волокна являются миофибриллы.

Каждая миофибрилла представляет собой нить толщиной от 0,5 до 2 мкм, а длина соответствует длине волокна. Она состоит из участков, различно преломляющих свет и потому имеющих на препарате вид темных (анизотропных) дисков А и светлых (изотропных) дисков И. В одном волокне миофибриллы располагаются так, что их темные диски приходятся против темных, а светлые против светлых. Через середину каждого изотропного диска проходит полоска Z или полоска Т (телофрагма) (12), а через середину анизотропного - полоска М (мезофрагма). В расслабленной мышце в середине анизотропного диска обнаруживают светлую зону (полоска Н), в центре которой и расположена полоска М. Участок миофибриллы между двумя полосками Z называют саркомером. В него входят половина изотропного диска, целый анизотропный и половина другого изотропного диска. Ввиду того, что миофибрилл в волокне очень много и лежат они очень тесно, под микроскопом различить отдельные фибриллы не удается, и для глаза светлые диски всех миофибрилл сливаются в сплошную поперечную светлую полосу, а темные диски - в темную поперечную полосу на мышечном волокне. Отсюда последнее и получило название поперечнополосатого. Под электронным микроскопом обнаружено, что миофибриллы представляют собой пучок протофибрилл (миофиламентов) двух типов (§, 9). Одни из них, более тонкие, берут начало от телофрагмы и состоят из белка актина, образуют они диски И, но немного заходят и в диски А. Другие, протофибриллы, образуя «зоны перекрывания», более толстые, состоят из миозина и расположены только в диске А. В зонах перекрывания между толстыми (миозиновыми) и тонкими (актиновыми) протофибриллами находятся короткие поперечно ориентированные отростки (мостики). При сокращении тонкие протофибриллы внедряются между толстыми, продвигаясь к мезофрагмам внутрь полоски Н, при этом толстые миозиновые тяжи приближаются к полоскам Z, упираясь в них в конце сокращения, так что диск И как бы исчезает.

В мышцах большинства животных миофибриллы располагаются плотным пучком в середине волокна (плотный тип строения волокна), а у других животных несколькими пучками, разделенными прослойками

Рис. 65. Схема строения мышцы:

1 - наружный перимизий; 2 - внутренний перимизий; 3 - кровеносные сосуды; 4 - нерв; 5 - жировые клетки; 6 - эндомизий; 7 - мышечные волокна в поперечном разрезе (точками обозначены мио-

Фибриллы в мышечных волокнах).

Группы поперечнополосатых мышечных волокон при помощи соединительной ткани (эндомизий) связываются в пучки I порядка (первичный мышечный пучок). Несколько пучков I порядка более значительным количеством соединительной ткани (внутренний перимизий) объединяются в пучки II порядка (вторичный мышечный пучок). Пучки II порядкаг соединяясь между собой при помощи новых слоев соединительной ткани, образуют пучки III порядка (третичный мышечный пучок) и т. д. Наконец, самые наружные слои соединительной ткани окутывают всю мышцу (наружный перимизий). Все прослойки соединительной ткани, проходящие между пучками различных порядков, а также между отдельными волокнами в пучке, связаны и составляют единый соединительнотканный каркас - строму мышцы (рис. 65). По прослойкам соединительной ткани проходит большое количество кровеносных и лимфатических сосудов, а также нервов. Иннер-вируется поперечнополосатая мышечная ткань черепномозговыми и спинномозговыми нервами. В составе последних находятся как двигательные волокна, передающие возбуждение от головного мозга в мышцу, так и чувствительные, передающие возбуждение от мышцы в головной мозг. Контролируется работа мышц непосредственно корой головного мозга.

Ткань - это совокупность схожих по строению клеток, которые объединены общими функциями. Практически все состоят из разных типов тканей.

Классификация

У животных и человека в организме присутствуют следующие типы тканей:

  • эпителиальная;
  • нервная;
  • соединительная;
  • мышечная.

Эти группы объединяют по несколько разновидностей. Так, соединительная ткань бывает жировой, хрящевой, костной. Также сюда относятся кровь и лимфа. Эпителиальная ткань существует многослойная и однослойная, в зависимости от строения клеток можно выделить также плоский, кубический, цилиндрический эпителий и т. д. Нервная бывает только одного вида. А о мы поговорим подробнее в этой статье.

Виды мышечной ткани

В организме всех животных выделяют три ее разновидности:

  • поперечно-полосатые мышцы;
  • сердечная мышечная ткань.

Функции гладкой мышечной ткани отличаются от таковых у поперечно-полосатой и сердечной, поэтому другое у нее и строение. Давайте рассмотрим подробнее структуру каждого вида мускулатуры.

Общая характеристика мышечных тканей

Так как все три вида относятся к одному типу, у них есть много общего.

Клетки мышечной ткани называются миоцитами, или волокнами. В зависимости от разновидности ткани, они могут иметь различную структуру.

Еще одним общим признаком всех видов мышц является то, что они способны сокращаться, однако у разных видов этот процесс происходит индивидуально.

Особенности миоцитов

Клетки гладкой мышечной ткани, как и поперечно-полосатой и сердечной, обладают вытянутой формой. Кроме того, в них есть особые органоиды, которые называются миофибриллы, или миофиламенты. В них содержатся (актин, миозин). Они необходимы для того, чтобы обеспечить движение мышцы. Обязательным условием функционирования мускула, кроме наличия сократительных белков, также является присутствие в клетках ионов кальция. Поэтому недостаточное или избыточное употребление продуктов с высоким содержанием данного элемента может привести к некорректной работе мускулатуры - как гладкой, так и поперечно-полосатой.

Кроме того, в клетках присутствует еще один специфический белок - миоглобин. Он необходим для того, чтобы связываться с кислородом и запасать его.

Что касается органоидов, то кроме наличия миофибрилл особенным для мышечных тканей является содержание большого количества в клетке митохондрий - двумембранных органоидов, отвечающих за клеточное дыхание. И это неудивительно, так как мышечному волокну для сокращения необходимо большое количество энергии, вырабатываемой при дыхании митохондриями.

В некоторых миоцитах также присутствует более чем одно ядро. Это характерно для поперечно-полосатой мускулатуры, в клетках которой может содержаться около двадцати ядер, а иногда эта цифра доходит и до ста. Это связано с тем, что волокно поперечно-полосатой мышцы сформировано из нескольких клеток, объединенных впоследствии в одну.

Строение поперечно-полосатых мышц

Данный тип ткани еще называют скелетной мускулатурой. Волокна этого типа мышц длинные, собранные в пучки. Их клетки могут достигать нескольких сантиметров в длину (вплоть до 10-12). В них содержится много ядер, митохондрий и миофибрилл. Основная структурная единица каждой миофибриллы поперечно-полосатой ткани - саркомер. Он состоит из сократительного белка.

Главная особенность этой мускулатуры заключается в том, что она может контролироваться сознательно, в отличие от гладкой и сердечной.

Волокна данной ткани прикрепляются к костям с помощью сухожилий. Именно поэтому такие мышцы и называются скелетными.

Структура гладкой мышечной ткани

Гладкие мышцы выстилают некоторые внутренние органы, такие как кишечник, матка, мочевой пузырь, а также сосуды. Кроме того, из них формируются сфинктеры и связки.

Гладкое мышечное волокно не такое длинное, как поперечно-полосатое. Но толщина его больше, чем в случае со скелетными мускулами. Клетки гладкой мышечной ткани обладают веретоноподобной формой, а не нитевидной, как миоциты поперечно-полосатой.

Структуры, которые обесечивают сокращение гладких мышц, называются протофибриллами. В отличие от миофибрилл, они обладают более простой структурой. Но материал, из которого они построены, - все те же сократительные белки актин и миозин.

Митохондрий в миоцитах гладкой мускулатуры также меньше, чем в клетках поперечно-полосатой и сердечной. Кроме того, в них содержится только одно ядро.

Особенности сердечной мышцы

Некоторые исследователи определяют ее как подвид поперечно-полосатой мышечной ткани. Их волокна и вправду во многом похожи. Клетки сердца - кардиомиоциты - также содержат несколько ядер, миофибриллы и большое количество митохондрий. Данная ткань, как и способна сокращаться намного быстрее и сильнее, нежели гладкая мускулатура.

Однако основной особенностью, отличающей сердечную мышцу от поперечно-полосатой, является то, что она не может контролироваться сознательно. Сокращение ее происходит только автоматически, как и в случае с гладкими мышцами.

В составе сердечной ткани, кроме типичных клеток, присутствуют также секреторные кардиомиоциты. Они не содержат в себе миофибрилл и не сокращаются. Эти клетки отвесают за выработку гормона атриопептина, который необходим для регуляции артериального давления и контроля объема циркулирующей крови.

Функции поперечно-полосатых мышц

Основная их задача - перемещение тела в пространстве. Также это перемещение частей тела относительно друг друга.

Из других функций поперечно-полосатых мышц можно отметить поддержание позы, депо воды и солей. Кроме того, они выполняют защитную роль, что особенно касается мышц брюшного пресса, предотвращающих механическое повреждение внутренних органов.

К функциям поперечно-полосатой мускулатуры можно также причислить регуляцию температуры, так как при активном сокращении мышц происходит выделение значительного количества тепла. Вот почему при перемерзании мышцы начинают непроизвольно дрожать.

Функции гладкой мышечной ткани

Мускулатура данного вида выполняет эвакуаторную функцию. Она заключается в том, что гладкие мышцы кишечника проталкивают каловые массы к месту их выведения из организма. Также эта роль проявляется при родах, когда гладкие мышцы матки выталкивают плод из органа.

Функции гладкой мышечной ткани этим не ограничиваются. Также немаловажна их сфинктерная роль. Из ткани данного вида формируются специальные круговые мышцы, которые могут смыкаться и размыкаться. Сфинктеры присутствуют в мочевых путях, в кишечнике, между желудком и пищеводом, в желчном пузыре, в зрачке.

Еще одна важная роль, которую играют гладкие мышцы, - формирование связочного аппарата. Он необходим для поддержания правильного положения внутренних органов. При понижении тонуса этих мышц может происходить опущение некоторых органов.

На этом функции гладкой мышечной ткани заканчиваются.

Предназначение сердечной мышцы

Здесь, в принципе, особо говорить не о чем. Основная и единственная функция этой ткани - обеспечение циркуляции крови в организме.

Вывод: различия между тремя видами мышечной ткани

Для раскрытия этого вопроса представляем таблицу:

Гладкая мускулатура Поперечно-полосатые мышцы Сердечная мышечная ткань
Сокращается автоматически Может контролироваться сознательно Сокращается автоматически
Клетки удлинненные, веретеноподобные Клетки длинные, нитевидные Удлинненные клетки
Волокна не объединяются в пучки Волокна объединяются в пучки Волокна объединяются в пучки
Одно ядро в клетке Несколько ядер в клетке Несколько ядер в клетке
Сравнительно небольшое количество митохондрий Большое количество митохондрий
Отсутствуют миофибриллы Присутствуют миофибриллы Есть миофибриллы
Клетки способны делиться Волокна не могут делиться Клетки не могут делиться
Сокращаются медленно, слабо, ритмично Сокращаются быстро, сильно Сокращаются быстро, сильно, ритмично
Выстилают внутренние органы (кишечник, матка, мочевой пузырь), формируют сфинктеры Крепятся к скелету Формируют сердце

Вот и все основные характеристики поперечно-полосатой, гладкой и сердечной мышечных тканей. Теперь вы ознакомлены с их функциями, строением и главными различиями и сходствами.

Мышечная ткань - это группа тканей животных и человека, главной функцией которых является сокращение, что, в свою очередь, обуславливает перемещение в пространстве организма или его частей. Этой функции соответствует строение главных элементов мышечной ткани, которые имеют удлиненную форму и продольную ориентацию миофибрилл, в состав которых входят сократительные белки - актин и миозин. Как и эпителиальная, мышечная ткань является сборной тканевой группой, поскольку ее главные составляющие развиваются из различных эмбриональных зачатков.
В зависимости от строения своего сократительного аппарата мышечная ткань подразделяется на поперечно-полосатую (скелетную) и гладкую ткани, состоящие из различных гистогенетических типов, отличающихся по строению. Общее представление о классификации мышечной ткани дает следующая схема:

Поперечно-полосатая мышечная ткань

Источником ее развития являются клетки миотомов, образующиеся из дорсальной мезодермы. Поперечно-полосатая мышечная ткань состоит из удлиненных образований - мышечных волокон, которые имеют вид цилиндров с заостренными концами. Волокна достигают 80 мкм в диаметре и 12 см в длину. В центре мышечных волокон содержатся многоядерные образования (симпласты), к которым снаружи прилегают клетки - миосателиты. Волокна ограничены сарколеммой, образованной базальной мембраной и плазмолеммой симпласт.
Миосателлиотоциты располагаются под базальной мембраной мышечного волокна так, что их плазмолемма касается плазмолеммы симпласт. Эти клетки представляют собой камбиальный резерв скелетной мышечной ткани, за счет которого осуществляется регенерация ее волокон.
Кроме плазмолеммы, миосимпласты включают в себя цитоплазму (саркоплазму) и многочисленные ядра, расположенные по периферии. В околоядерном участке расположена слабо развитая гранулярная эндоплазматическая сетка и комплекс Гольджи. Мышечное волокно с его оболочкой, нервными окончаниями, кровеносными и лимфатическими капиллярами называется мышечной единицей (Мион).
Характерной особенностью волокон скелетной мускулатуры является поперечная полосатость, обусловленная чередованием двухзаламывающих (анизотропных) А-дисков и однозаламывающих (изотропных) И-дисков. В состав дисков входят миофибриллы, которые образуют сократительных аппарат волокон. Миофибриллы состоят из упорядоченных нитей сократительных белков актина и миозина. Эти нити закрепляются поперечно расположенными телофрагмамы и мезофрагмамы,
которые состоят из других белков. Отрезок миофибриллы между соседними телофрагмамы называется саркомера. Он представляет собой морфофункциональные единицу сократительного аппарата волокна. В его средней части расположена мезофрагма (М-линия на продольных срезах). От мезофрагмы в сторону телофрагмы отходят толстые (около 11 нм в поперечнике) нити миозина, а от телофрагмы навстречу им - тонкие (около 5 нм) нити актина.
Миозиновые нити - главный компонент темных дисков, а актиновые нити - светлых дисков. В составе темного диска актиновые и миозиновые нити располагаются параллельно. Средний отрезок А-диска имеет только миозиновые нити и называется Н-полоской (светлой зоной).
Для удобства рассмотрения структуры сократительного аппарата мышечного волокна необходимо запомнить так называемую формулу саркомера, которая отражает последовательное размещение его основных компонентов и выглядит так: телофрагма +1 / 2 диска 1 + 1 / 2 диска А + полоска М + + 1 / 2 диска А + 1 / 2 диска И + телофрагма.
Цитолемму симпластичной части мышечного волокна на уровне телофрагм образует глубокие выпячивания - поперечные или Т-трубочки (от лат. Transversus - поперечный). Параллельно этим трубочкам расположенные расширенные участки канальцев агранулярной эндоплазматической сети (конечные цистерны), которые сопровождают их с двух сторон. Вместе с Т-трубочками они образуют триады.
В конечных цистернах агранулярнои эндоплазматической сети в расслабленном состоянии мышечного волокна аккумулируются ионы кальция. Под влиянием распространения по цитолемме волокна и Т-трубочкам потенциала действия ионы кальция выходят из конечных цистерн, поступающих в миофибрилл и, взаимодействуя с особыми ретикулярными белками - тропонином и тропомиозином, начинают активно сокращаться. При этом актином и миозином нити, взаимодействуя между собой, перемещаются навстречу друг другу. Актиновые нити заходят между миозиновыми, приближаются к М-линии, в связи с чем при сокращении мышечного волокна уменьшается ширина Н-полоски и Н-диска. Ширина А-диска остается при этом неизменной. (Строение разных функциональных типов мышечных волокон рассматривается в учебниках по гистологии).

Гладкая мышечная ткань

Гладкая мышечная ткань мезенхимального происхождения образует мышечные оболочки внутренних органов. Гладкие миоциты чаще имеют веретенообразную форму, длина их составляет от 15 до 500 мкм, а толщина - от 5 до 8 МНМ. Ядра клеток вытягиваются по длине. При сокращении клеток они могут набирать вид буравчика. Органеллы в этих клетках развиты мало. Цитолемму, вытягиваясь, образует многочисленные пиноцитозные пузырьки, которые передают внутрь клетки раздражение, что, в свою очередь, вызывает ее сокращение.
Сократительных аппарат гладких миоцитов (миофибрилл) состоит из тонких миофиламентов, образованных актином, и толстым, сформированным миозином. Миоциты ограничены базальной мембраной, а также коллагеновыми (ретикулярными) эластичными волокнами. Эти структурные компоненты гладкой мышечной ткани образуются гладкие миоциты. Эфферентная (моторная) иннервация гладких миоцитов осуществляется постганглионарными волокнами автономной нервной системы . Соседние миоцитов через отверстия в базальной мембране образуют друг с другом щелевидные сообщения (нексус), которые обеспечивают функциональные взаимодействия клеток.
Гладкая мышечная ткань эпидермального происхождения образована миоэпителиальными клетками, которые образуются из кожной мезодермы. Они имеют звездчатую (ведростчастую) форму и входят в состав потовых, молочных и слюнных желез. Расположены между эпителиальными клетками и базальной мембраной секреторных отделов желез и мелких выводных протоков, они, сокращаясь, способствуют выведению секрета.
Гладкая мышечная ткань неврального происхождения образуется в процессе эмбрионального развития глазного яблока из клеток стенки глазного бокала. Она входит в состав мышц радужки глазного яблока, которые расширяют или сужают зрачок.

Мышечные ткани – это специализированные ткани, ос­новной функцией которых является сокращение. Благодаря им обеспечиваются все двигательные процессы в организме (гемоциркуляция в сосудах, ритмическая деятельность мио­карда, перистальтика пищеварительного тракта и другие, а также перемещение организма в пространстве). Сокращение структурных элементов мышечных тканей осуществляется с помощью специальных органелл – миофибрилл – и является результатом взаимодействия молекул сократительных бел­ков.

Существуют две классификации мышечных тканей – морфофункциональная и генетическая. Согласно первой классификации мышечные ткани делят на две группы: 1) гладкая (неисчерченная) мышечная ткань, которая характе­ризуется тем, что содержит миофибриллы, не имеющие по­перечной исчерченности; 2) поперечнополосатая (исчер­ченная) мышечная ткань, миофибриллы которой образуют поперечную исчерченность. В свою очередь, она подразделя­ется на скелетную и сердечную . Согласно генетической классификации (по происхождению), мышечные ткани делят на 5 типов: 1) мезенхимные (развиваются из мезенхимы, на­ходятся во внутренних органах и сосудах); 2) эпидермаль­ные (развиваются из кожной эктодермы, включают немы­шечные сокращающиеся клетки – миоэпителиальные клетки потовых, молочных, слюнных и слезных желез); 3) нейраль­ные (развиваются из нервной трубки, к ним принадлежат гладкие миоциты мышц радужной оболочки глаза); 4) сома­тические (развиваются из миотомов мезодермы и образуют скелетную мышечную ткань); 5) целомические (развиваются из висцерального листка спланхнотома и образуют сердеч­ную мышечную ткань). Первые три типа относятся к гладким мышечным тканям, остальные – к поперечнополосатым. К общим структурным признакам, характерным для мышечных тканей, следует отнести наличие: 1)специальных органелл – миофибрилл, благодаря взаимодействию их сократительных белков, осуществляется сокращение; 2)развитого трофиче­ского аппарата, обеспечивающего выполнение сократитель­ной функции – митохондрий, гладкой эндоплазматической сети, включений гликогена и миоглобина; 3)развитого опор­ного аппарата в виде двуслойной оболочки с окружающей ее сетью волокон соединительной ткани.

Гладкая мышечная ткань

Гладкая мышечная ткань мезенхимного происхожде­ния располагается в стенке внутренних органов и сосудов. Структурной единицей ее является гладкий мио­цит . Это клетка веретеновидной, иногда отростчатой формы (матка, эндокард, аорта), длиной 20-500 мкм, с центрально располо­женным ядром (рис. 7-1). Цитолемма гладкого мио­цита обра­зует многочисленные впячивания – кавеолы (мел­кие пу­зырьки). Снаружи цитолемму покрывает тонкая ба­зальная мембрана. В базальной мембране каждого миоцита есть от­верстия, где клетки контактируют друг с другом при помощи нексусов, осуществляющих метаболические связи.

Органеллы общего значения – комплекс Гольджи, мито­хондрии, свободные рибосомы, саркоплазматическая сеть – локализуются в основном около полюсов ядра. Наиболее развитыми и многочисленными из них являются митохонд­рии . Саркоплазматическая сеть участвует в синтезе гликоза­миногликанов и белковых молекул, из которых осуществля­ется сборка компонентов базальной мембраны, волокон, аморфного вещества, окружающих клетки. Синтетическая способность дефинитивных миоцитов снижается. Длинные узкие трубочки гладкой саркоплазматической сети, примы­кают к кавеолам и вместе с ними служат для депонирования ионов кальция.

Специальные органеллы видны в виде нитей, ориенти­рованных преимущественно вдоль длинной оси клетки и не имеющих поперечной исчерченности. В цитоплазме миоци­тов стабильно выявляются только тонкие нити – миофила­менты, состоящие из белка актина. Они прикрепляются на внутренней стороне цитолеммы, образуя плотные тельца, состоящие из белка актинина. При изменении мембранного потенциала клетки ионы кальция, поступающие из депо, ак­тивируют сборку миозиновых (более толстых) нитей и их взаимодействие с актиновыми. По мере образования актин-миозиновых мостиков происходит смещение актиновых миофиламентов навстречу друг другу, тяга передается на цитолемму, и клетка укорачивается. При уменьшении содер­жания кальция миозин теряет сродство к актину. В резуль­тате начинается расслабление миоцита и разборка миозино­вых нитей. Сокращение медленное, тоническое.

Рис. 7-1. Гладко-мышечная клет-ка.

1. Митохондрии.

2. Базальная мембрана.

3. Плотные тельца.

4. Зона щелевидных контактов.

5. Актиновые миофиламенты.

6. Ядро.

7. Кавеолы.

(По Lentz T. L. 1971).

Иннервация гладкой мышечной ткани осуществляется вегетативной нервной системой – симпатическими и пара­симпатическими нервными волокнами, терминали которых формируют варикозные расширения на гладкомышечных клетках. Гладкие миоциты функционируют не изолированно, а клеточными комплексами. Клетки контактируют друг с другом при помощи нексусов. Последние способствуют про­ведению возбуждения от клетки к клетке, охватывая сразу группу миоцитов. В составе комплексов есть также мио­циты-пейсмекеры, которые сами генерируют потенциал дей­ствия и передают его соседним клеткам.

Вокруг каждого гладкого миоцита из ретикулярных, эластических и коллагеновых волокон образуется сетка – эн­домизий . Группы из 10-12 клеток объединяются в мышечные пласты, окруженные соединительной тканью с кровеносными сосудами и нервами, называемой перимизием . В органах пучки мышечных клеток формируют слои мышечной ткани. Совокупность пучков образует мышцу, которая окружена более толстой прослойкой соединительной ткани – эпими­зием . При повышенной функциональной нагрузке гладкие миоциты гипертрофируются, как, например, в матке во время беременности, проявляя высокую способность к физиологи­ческой регенерации. При репаративной регенерации восста­новление возможно за счет деления малодифференцирован­ных миоцитов, которые находятся в составе мышечных ком­плексов, а также из адвентициальных клеток и миофиброб­ластов.

В статье мы рассмотрим виды мышечных тканей. Это очень важная тема в биологии, ведь каждый должен знать, как функционируют наши мышцы. Они представляют собой сложную систему, изучение которой, надеемся, вам будет интересно. А помогут лучше представить себе виды мышечной ткани картинки, которые вы найдете в этой статье. Прежде всего, дадим определение, которое необходимо при изучении данной темы.

Это особая группа и животных, основной функцией которой является ее сокращение, обусловливающее перемещение организма или составляющих его частей в пространстве. Данной функции соответствует строение основных элементов, из которых состоят различные виды мышечных тканей. Элементы эти имеют продольную и удлиненную ориентацию миофибрилл, включающих в свой состав - миозин и актин. Мышечная ткань, как и эпителиальная, это сборная тканевая группа, так как основные ее элементы развиваются из эмбриональных зачатков.

Сокращение мышечной ткани

Клетки ее, так же как и нервные, при воздействии электрических и химических импульсов могут возбуждаться. Способность их сокращаться (укорачиваться) в ответ на действие того или иного стимула связана с наличием миофибрилл, особых белковых структур, каждая из которых состоит из микрофиламентов, коротких белковых волокон. В свою очередь, они подразделяются на миозиновые (более толстые) и актиновые (тонкие) волокна. В ответ на нервное раздражение сокращаются различные виды мышечных тканей. Сокращение к мышце передается по нервному отростку через нейромедиатор, которым является ацетилхолин. Мышечные клетки в организме осуществляют энергосберегающие функции, так как расходуемая при сокращении различных мышц энергия выделяется затем в виде тепла. Именно поэтому, когда организм подвержен охлаждению, возникает дрожь. Это не что иное, как частые сокращения мышц.

Можно выделить следующие виды мышечных тканей, в зависимости от того, какое строение имеет сократительный аппарат: гладкую и поперечнополосатую. Они состоят из отличающихся по строению гистогенетических типов.

Мышечная ткань поперечнополосатая

Клетки миотомов, которые образуются из дорсальной мезодермы, являются источником ее развития. Эта ткань состоит из удлиненных имеющих вид цилиндров, концы которых заострены. 12 см в длину и 80 мкм в диаметре достигают эти образования. Симпласты (многоядерные образования) содержатся в центре мышечных волокон. Снаружи к ним прилегают клетки под названием "миосателлиты". Сарколеммой ограничены волокна. Она образуется плазмолеммой симпласт и базальной мембраной. Под базальной мембраной волокна располагаются миосателлиотоциты - так, что плазмолеммы симпласт касается их плазмолемма. Данные клетки являются камбиальным резервом мышечной скелетной ткани, и именно за счет него осуществляется регенерация волокон. Миосимпласты, кроме плазмолеммы, включают в себя также саркоплазму (цитоплазму) и расположенные по периферии многочисленные ядра.

Значение поперечнополосатой мышечной ткани

Описывая виды мышечной ткани, следует отметить, что поперечнополосатая является исполнительным аппаратом всей двигательной системы. Она формирует Кроме того, этот вид ткани входит в структуру внутренних органов, таких как глотка, язык, сердце, верхний отдел пищевода и др. Общая масса ее у взрослого человека составляет до 40% от массы тела, а у пожилых людей, а также новорожденных, ее доля - 20-30%.

Особенности поперечнополосатой мышечной ткани

Сокращение данного вида мышечной ткани, как правило, можно производить с участием сознания. Она обладает несколько большим быстродействием по сравнению с гладкой. Как вы видите, виды мышечной ткани отличаются (о гладкой мы поговорим совсем скоро и отметим некоторые другие различия между ними). В поперечнополосатых мышцах нервные окончания воспринимают информацию о текущем состоянии мышечной ткани, а затем передают ее по афферентным волокнам в нервные центры, ответственные за регуляцию двигательных систем. Управляющие сигналы поступают от регуляторов в виде нервных импульсов по двигательным или вегетативным эфферентным нервным волокнам.

Гладкая мышечная ткань

Продолжая описывать виды мышечных тканей человека, переходим к гладкой. Она формируется веретенообразными клетками, длина которых составляет от 15 до 500 мкм, а диаметр находится в промежутке от 2 до 10 мкм. В отличие от волокон мышцы поперечнополосатой, эти клетки имеют одно ядро. Кроме того, у них нет поперечной исчерченности.

Значение гладкой мышечной ткани

От сократительной функции этого вида мышечной ткани зависит функционирование всех систем организма, поскольку она входит в структуру каждой из них. Так, например, гладкая мышечная ткань участвует в управлении диаметром дыхательных путей, кровеносных сосудов, в сокращении матки, мочевого пузыря, в реализации двигательных функций нашего пищеварительного тракта. Она управляет диаметром зрачка глаз, а также участвует во множестве других функций различных систем организма.

Мышечные слои

Мышечные слои образует этот вид ткани в стенках лимфатических и кровеносных сосудов, а также всех полых органов. Обыкновенно это два или три слоя. Толстый циркулярный - наружный слой, средний присутствует не обязательно, тонкий продольный - внутренний. Питающие мышечную ткань кровеносные сосуды, а также нервы проходят параллельно оси мышечных клеток между их пучками. Гладкомышечные клетки можно разделить на 2 типа: унитарные (объединенные, сгруппированные) и автономные миоциты.

Автономные миоциты

Автономные функционируют довольно независимо друг от друга, так как нервным окончанием иннервируется каждая такая клетка. Они были обнаружены в мышечных слоях крупных кровеносных сосудов, а также в ресничной мышце глаза. Также к данному типу относятся клетки, из которых состоят мышцы, поднимающие волосы.

Унитарные миоциты

Унитарные мышечные клетки, напротив, тесно между собой переплетаются, так что мембраны их могут не просто примыкать плотно друг к другу, образуя десмосомы, но также и сливаться, формируя нексусы (щелевые контакты). Пучки образуются в результате данного объединения. Диаметр их составляет около 100 мкм, а длина достигает нескольких мм. Они формируют сеть, и в ее ячейки вплетаются Волокнами вегетативных нейронов иннервируются пучки, и они становятся функциональными единицами гладкой мышечной ткани. Деполяризация при возбуждении одной клетки пучка распространяется очень быстро на соседние, поскольку мало сопротивление щелевых контактов. Состоящие из унитарных клеток ткани есть в большинстве органов. К ним относятся мочеточники, матка, пищеварительный тракт.

Сокращение миоцитов

Сокращение миоцитов обусловлено в гладкой ткани, как и в поперечнополосатой, взаимодействием миозиновых и актиновых нитей. В этом схожи различные виды мышечной ткани у человека. Данные нити распределены внутри миоплазмы менее упорядоченно, чем в мышце поперечнополосатой. С этим связано отсутствие поперечной исчерченности в гладкой мышечной ткани. Внутриклеточный кальций является конечным исполнительным звеном, управляющим взаимодействием миозиновых и актиновых нитей (то есть сокращением миоцитов). Это же относится и к поперечнополосатой мышце. Однако детали механизма управления существенно отличаются от последней.

Проходящие в самой толще мышечной гладкой ткани вегетативные аксоны формируют не синапсы, что характерно для ткани поперечнополосатой, а многочисленные утолщения, имеющиеся по всей длине, которые и играют роль синапсов. Утолщения выделяют медиатор, который диффундирует к расположенным рядом миоцитам. Рецепторные молекулы находятся на поверхности этих миоцитов. С ними медиатор и взаимодействует. Он вызывает деполяризацию у миоцита внешней мембраны.

Особенности гладкой мышечной ткани

Нервная система, ее вегетативный отдел, управляется без участия сознания работой гладких мышц. Мышцы мочевого пузыря являются единственным исключением. Управляющие сигналы либо непосредственно реализуются, либо опосредованно - через гормональные (химические, гуморальные) воздействия.

Энергетические и механические свойства данного вида мышечной ткани обеспечивают поддержание тонуса (управляемого) стенок полых органов и сосудов. Связано это с тем, что гладкая ткань функционирует эффективно, не требуется больших затрат АТФ. У нее меньшее быстродействие, чем у мышечной ткани поперечнополосатой, однако она способна сокращаться более продолжительное время, кроме того, может развивать существенное напряжение и изменять в широких пределах свою длину.

Итак, мы рассмотрели виды мышечных тканей и особенности их структурной организации. Конечно, это лишь основная информация. Можно долго описывать виды мышечных тканей. Рисунки помогут вам наглядно их представить.